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The quantum dynamics of a one-dimensional bosonic Josephson junction is studied by solving the time-

dependent many-boson Schrödinger equation numerically exactly. Already for weak interparticle inter-

actions and on short time scales, the commonly employed mean-field and many-body methods are found

to deviate substantially from the exact dynamics. The system exhibits rich many-body dynamics such as

enhanced tunneling and a novel equilibration phenomenon of the junction depending on the interaction,

which is attributed to a quick loss of coherence.
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Recent experiments on interacting Bose-Einstein con-
densates in double-well traps have led to some of the most
exciting results in quantum physics, including matter-wave
interferometry [1,2], squeezing and entanglement [3,4], as
well as work on high-precision sensors [5]. Particular
attention has been paid to tunneling phenomena of inter-
acting Bose-Einstein condensates in double wells, which in
this context are referred to as bosonic Josephson junctions.
Explicitly, Josephson oscillations and self-trapping (sup-
pression of tunneling) with Bose-Einstein condensates
have been predicted [6,7] and recently realized in experi-
ments [8,9], drawing intensive interest [10–15].

For the first time in literature, we provide the numeri-
cally exact many-body quantum dynamics of a one-
dimensional (1D) bosonic Josephson junction in this
work. This is made possible by a breakthrough in the
solution of the time-dependent many-boson Schrödinger
equation. We use the exact solution to check the current
understanding of bosonic Josephson junctions—com-
monly described by the popular Gross-Pitaevskii (GP)
mean-field theory and the Bose-Hubbard (BH) many-
body model—and to find novel phenomena. The results
of the GP and BH theories are found to deviate substan-
tially from the full many-body solution already for weak
interactions and on short time scales. In particular, the
well-known self-trapping effect is greatly reduced. We
attribute these findings to a quick loss of the junction’s
coherence not captured by the common methods. For
stronger interactions and on longer time scales, we find a
novel equilibration dynamics in which the density and
other observables of the junction tend towards stationary
values. We show that the dynamics of bosonic Josephson
junctions is much richer than what is currently known.

To compute the time evolution of the system, we solve
the time-dependent many-boson Schrödinger equation by
using the multiconfigurational time-dependent Hartree for
bosons (MCTDHB) method [16]. In the MCTDHBðMÞ
method, the time-dependent many-boson wave function
is expanded in all time-dependent permanents j ~n; ti, gen-
erated by distributing N bosons over M time-dependent

orbitals f�iðx; tÞg. ~n ¼ ðn1; n2; . . . ; nMÞ collects the occu-
pation numbers. The MCTDHB wave function thus reads
j�ðtÞi ¼ P

~nC~nðtÞj ~n; ti. The expansion coefficients fC~nðtÞg
and orbitals f�iðx; tÞg are determined by the Dirac-Frenkel
time-dependent variational principle [16]. Our results are
obtained by using a novel mapping of the many-boson
configuration space in combination with a parallel imple-
mentation of MCTDHB, allowing the efficient handling of
millions of time-dependent optimized permanents [17].
Having computed the many-boson wave function j�ðtÞi,

we focus on the evolution of the following quantities to
analyze the dynamics of the Josephson junction. The re-
duced one-body density matrix of the system is defined by

�ð1Þðxjx0; tÞ ¼ h�ðtÞj�̂yðx0Þ�̂ðxÞj�ðtÞi, where �̂ðxÞ is the
usual bosonic field operator annihilating a particle at posi-

tion x. Its diagonal part, �ðx; tÞ � �ð1Þðxjx0 ¼ x; tÞ, is sim-
ply the density of the system. As is common in the analysis
of bosonic Josephson junctions, the ‘‘survival probability’’
of the system in, e.g., the left well, is obtained by integrat-
ing the density over the left well, pLðtÞ � 1

N

R
0
�1 �ðx; tÞdx.

Furthermore, the eigenvalues nð1Þi of �ð1Þðxjx0; tÞ determine
the extent to which the system is condensed or fragmented
[18,19]. Finally, the first-order correlation function

gð1Þðx0; x; tÞ � �ð1Þðxjx0; tÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðx; tÞ�ðx0; tÞp

quantifies the
system’s degree of spatial coherence [20,21].
We now turn to the details of the 1D bosonic Josephson

junction considered in this work. It is convenient to use
dimensionless units defined by dividing the Hamiltonian

by @
2

mL2 , where m is the mass of a boson and L is a length

scale. Realistic experimental parameters for the cases con-
sidered below are given in Ref. [22]. The full many-body
Hamiltonian then reads H ¼ P

N
i¼1 hðxiÞ þ

P
i<jWðxi �

xjÞ, where hðxÞ ¼ � 1
2

@2

@x2
þ VðxÞ, with a trapping po-

tential VðxÞ and an interparticle interaction potential
Wðx� x0Þ ¼ �0�ðx� x0Þ. �0 is determined by the scatter-
ing length as and the transverse confinement !? [23]. In
the following we assume repulsive interaction, �0 > 0. The
symmetric double-well potential VðxÞ is generated by con-
necting two harmonic potentials V�ðxÞ ¼ 1

2 ðx� 2Þ2 with a
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cubic spline in the region jxj � 0:5. The lowest four single-
particle energy levels e1 ¼ 0:473, e2 ¼ 0:518, e3 ¼ 1:352,
and e4 ¼ 1:611 of VðxÞ are lower than the barrier height
Vð0Þ ¼ 1:667.

Left- and right-localized orbitals �L;R can be con-

structed from the single-particle ground state and the first
excited state of VðxÞ. �L and �R determine the parameters
U ¼ �0

R j�Lj4, J ¼ �R
��

Lh�R, the Rabi oscillation pe-

riod tRabi ¼ �=J, and the often employed interaction pa-
rameters, � ¼ UN=ð2JÞ and U=J [6,7]. In this work, we
use the interaction parameter � ¼ �0ðN � 1Þ, which ap-
pears naturally in the full many-body treatment, and quote
the corresponding values for� andU=J. Within the frame-
work of two-mode GP theory, a state, which is initially
localized in one well, is predicted to remain self-trapped if
�>�c ¼ 2 [6,7]. We will consider interaction strengths
below, in the vicinity of, and above �c.

In all of our computations, the system is prepared at t ¼
0 as the many-body ground state of the potential VþðxÞ and
then propagated in the potential VðxÞ. Within the BH
framework, this procedure amounts to starting from the
state in which all bosons occupy the orbital �L.

We begin our studies with a weak interaction strength
� ¼ 0:152, leading to U=J ¼ 0:140 (0.027) and � ¼ 1:40
(1.35) for N ¼ 20 (100) bosons, which is well below the
transition point for self-trapping �c ¼ 2. In the upper two
panels of Fig. 1, the full many-body results for pLðtÞ are
shown together with those of GP and BH theory. The full
many-body dynamics is governed by three different time
scales. On a time scale of the order of a Rabi cycle, pLðtÞ
performs large-amplitude oscillations about pL ¼ 0:5, the
long-time average of pLðtÞ. The amplitude of these oscil-
lations is damped out on a time scale of a few Rabi cycles
and marks the beginning of a collapse and revival (not
shown) sequence [6], which is also found on the full many-
body level. On top of these slow large-amplitude oscilla-
tions, a higher frequency with a small amplitude can be
seen. In a single-particle picture, these high frequency
oscillations can be related to contributions from higher
excited states in the initial wave function. However, a
single-particle picture fails to describe the dynamics,
as we shall now show. While the initial wave function
j�ðt ¼ 0Þi is practically condensed—the fragmentation
of the system is less than 10�4 (10�5) for N ¼ 20 (100)
bosons—the propagated wave function j�ðtÞi quickly be-
comes fragmented. The fragmentation increases to about
33% (26%) at t ¼ 3tRabi for N ¼ 20 (100) particles, mak-
ing a many-body treatment indispensable already at this
weak interaction strength. The respective GP results oscil-
late back and forth at a frequency close to the Rabi fre-
quency and resemble the full many-body dynamics only on
a time scale shorter than half a Rabi cycle. The poor quality
of the GP mean-field approximation is, of course, due to
the fact that the exact wave function starts to fragment
while the GP dynamics remains condensed by
construction.

The BH result for pLðtÞ reproduces many features of the
exact solution at this interaction strength for both N ¼ 20
and N ¼ 100 particles. The large-amplitude oscillations
collapse over a period of a few Rabi cycles and revive at a
later stage (not shown). Also, the BH solution quickly
becomes fragmented, starting from the left localized state,
which is totally condensed. The fragmentation of the BH
wave function for N ¼ 20 (100) particles at t ¼ 3tRabi is
essentially the same as the respective value of the exact
solution. However, differences between the exact and the
BH result are visible even on time scales less than half a
Rabi cycle. Not only are the amplitudes obviously differ-
ent, but the frequencies contained in pLðtÞ are different as
well. Furthermore, the BH solutions do not exhibit a high
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FIG. 1 (color online). Full quantum dynamics of a 1D bosonic
Josephson junction below (�<�c) and above (�>�c) the
transition to self-trapping as defined by the two-mode GP theory.
Shown is the full many-body result [solid (blue) lines] for the
probability of finding a boson in the left well, pLðtÞ. For
comparison, the respective GP [dotted (black) lines] and BH
[dashed (magenta) lines] results are shown as well. The parame-
ter values are (a) N ¼ 20, � ¼ 0:152, (b) N ¼ 100, � ¼ 0:152
(�<�c), (c) N ¼ 20, � ¼ 0:245, and (d) N ¼ 100, � ¼ 0:245
(�>�c). The GP and BH results are found to deviate from the
full many-body results already after short times. The insets show
the convergence of the full many-body results. In the color
online: (a), (c) M ¼ 2 (solid purple line), M ¼ 4 (solid red
line), M ¼ 6 (solid green line), and M ¼ 8 (solid blue line).
The M ¼ 2 results are seen to deviate slightly from the con-
verged results for M � 4. (b), (d) The results for M ¼ 2 (solid
purple line) and M ¼ 4 (solid blue line) are shown. All quanti-
ties shown are dimensionless.
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frequency oscillation on top of the slow large-amplitude
oscillations, a difference which is related to the fact that the
BH orbitals are time independent and thus not determined
variationally at each point in time. Note that pLðtÞ is a
quantity in which all spatial degrees of freedom have been
integrated out. Visible differences in pLðtÞ imply that it is
not only the densities �ðx; tÞ which must differ, but also all
correlation functions.

The insets of Figs. 1(a) and 1(b) demonstrate the con-
vergence of the many-body dynamics results. In particular
and somewhat unexpectedly, the number of time-
dependent orbitals needed to describe the bosonic Joseph-
son junction dynamics quantitatively isM ¼ 4, even below
the transition point for self-trapping. These orbitals are
determined variationally at each point in time, implying
that any method using time-independent orbitals will need
substantially more orbitals to achieve the same accuracy.

One of the central phenomena often discussed in the
context of bosonic Josephson junctions is the celebrated
self-trapping transition [6–9]. In what follows, we study
the dynamics of a bosonic Josephson junction in the self-
trapping regime from the full many-body perspective.

The interaction strength is taken to be � ¼ 0:245, lead-
ing to U=J ¼ 0:226 (0.043) and � ¼ 2:26 (2.17) for N ¼
20 (100) particles. Hence, the system is just above the
critical value for self-trapping �c ¼ 2 [6,7]. The re-
sults for N ¼ 20 and N ¼ 100 are collected in Figs. 1(c)
and 1(d). The exact solutions exhibit indeed some self-
trapping on the time scale shown. The fragmentation of the
condensate for N ¼ 20 (100) bosons increases from ini-
tially less than 10�4 (10�5) to about 28% (18%) after three
Rabi cycles. Note that the system is now less fragmented
than for weaker interactions after the same period of time.
Nevertheless, GP theory is—as before—inapplicable, even
on time scales shorter than tRabi=2. The BH results deviate
from the true dynamics even earlier. They greatly over-
estimate the self-trapping and coherence of the condensate.
According to the BH model, the condensate would only be
13% (11%) fragmented for N ¼ 20 (100) at t ¼ 3tRabi,
which is not the case. This trend also continues for stronger
interactions (see below). The following general statement
about the relationship between self-trapping and coherence
can be inferred from the exact results: self-trapping is only
present as long as the system remains coherent. We find
this statement to be true at all interaction strengths and all
particle numbers considered in this work.

Let us briefly discuss the applicability of GP theory and
the BH model to the cases considered above. 1D Bose
gases are considered weakly interacting when the parame-

ter
ffiffiffiffi
�

p ¼ ffiffiffiffiffiffiffiffiffiffiffi
�0=�

p
[24] is small compared to one (� is a

characteristic density). Using the peak density for �, we
find 1

200 <
ffiffiffiffi
�

p
< 1

30 , showing that the above cases are

weakly interacting. The BH model is expected to be valid
when the chemical potential � is well below the band gap
egap ¼ e3 � e2 and the initial state lies within the first band

[6]. These conditions are well satisfied. We find �=egap �

1
14 and 1

9 for the cases shown in Figs. 1(a) and 1(b) and

Figs. 1(c) and 1(d), respectively. The overlap integral of the
initial states’ first natural orbital with the left BH orbital is
0.9991(!) in all cases; the initial states are therefore essen-
tially given by the BH state jN; 0i. The results do not
depend significantly on this tiny difference. Clearly, we
have shown a failure of GP theory and the BH model
within their range of expected validity.
We now turn to the case of stronger interactions, � ¼

4:9, which is well above the self-trapping transition point.
This leads to U=J ¼ 9:55 (0.869) and � ¼ 47:8 (43.4) for
N ¼ 10 (100) bosons. Note that we now use 10 instead of
20 bosons to demonstrate convergence. The energy per
particle of the full many-body wave function is now
E=N ¼ 1:22 (1.28) for N ¼ 10 (100) bosons, which is still
below the barrier height Vð0Þ ¼ 1:667. Although here
we are outside of the range of expected validity of GP
and BH, it is interesting to see what they fail to describe.
Figure 2 (top) shows the full many-body results forN ¼ 10
and N ¼ 100 bosons together with those of the BH model.
The two BH results lie on top of each other. In complete
contrast to the BH dynamics, for which pLðtÞ remains
trapped in the left well, the full many-body dynamics
shows no self-trapping. Instead, a very intricate dynamics
results, leading to an equilibration phenomenon in which
the density of the system tends to be equally distributed
over both wells.
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FIG. 2 (color online). Emergence of equilibration of the den-
sity at interaction strength � ¼ 4:9. Top: same as Fig. 1, but for
N ¼ 10 [solid black (blue) line] and N ¼ 100 [solid gray (green)
line]. The respective BH [dashed (magenta) line] results are on
top of each other. In contrast to the BH dynamics, which is
completely self-trapped, the full many-body dynamics is not.
pLðtÞ tends towards its long-time average pL ¼ 0:5. For N ¼
100 particles, M ¼ 4 orbitals were used. The inset shows the
convergence of the full many-body solution for N ¼ 10 bosons.
In the color online:M ¼ 4 (solid black line),M ¼ 10 (solid blue
line), and M ¼ 12 (solid red line). The M ¼ 4 result follows the
trend of the converged M ¼ 12 result. Bottom: corresponding
natural-orbital occupations for N ¼ 10 bosons. The system
becomes fragmented and roughly four natural orbitals are mac-
roscopically occupied. All quantities are dimensionless.
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The system’s full many-body dynamics is again strongly
fragmented as can be seen in Fig. 2 (bottom), which depicts

the natural-orbital occupations nð1Þi for N ¼ 10 particles.
This rules out any description of the system by GP theory
which always predicts condensation. Also shown are the
natural-orbital occupations of the BH model, which
wrongly describes a fully condensed system although, in
principle, this model can describe fragmentation.

The strong fragmentation of the system implies the
presence of strong correlations. This can be seen in the
two upper panels of Fig. 3, which show the full many-body

result for the first-order correlation function gð1Þðx0; x; tÞ of
N ¼ 10 bosons at times t ¼ 0 and t ¼ 10tRabi. The frag-
mentation of the initial state is only �2%, leading to an

almost flat gð1Þðx0; x; 0Þ. This reflects the fact that the
system is initially coherent over its entire extent. At t ¼
10tRabi, the coherence of the system is completely lost even
on length scales much shorter than its size (see upper right

panel of Fig. 3). Note that gð1Þðx0; x; tÞ also tends to equili-

brate. The respective BH results for gð1Þðx0; x; tÞ are shown
in the two lower panels of Fig. 3 and in contrast display no
visible loss of coherence.

Let us briefly summarize. We have obtained exact results
for the full many-body dynamics of a 1D bosonic
Josephson junction. The dynamics is found to be much
richer than previously reported. In particular, the predic-
tions of the commonly employed Gross-Pitaevskii and

Bose-Hubbard theories are found to differ substantially
from the exact results already after short times and rela-
tively weak interactions. These differences are associated
with the development of fragmentation and correlations not
captured by the standard theories. For stronger interac-
tions, where the standard theories predict coherence and
self-trapping, we find a completely different dynamics.
The system becomes fragmented, spatial coherence is
lost, and a long-time equilibration of the junction emerges.
We hope our results stimulate experiments.
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FIG. 3 (color online). Dynamics of the first-order correlation
function for � ¼ 4:9 at which the equilibration phenomenon of
Fig. 2 occurs. Shown is jgð1Þðx0; x; tÞj2 of N ¼ 10 bosons at
different times. Top left: full many-body result at t ¼ 0. The
initial state exhibits coherence over the entire extent of the
system. Top right: full many-body result at t ¼ 10tRabi. The
coherence is lost. The system is incoherent even on short length
scales. Bottom left: BH result at t ¼ 0. Bottom right: BH result
at t ¼ 10tRabi. In contrast to the full many-body result, the BH
wave function remains completely coherent.
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