
UNCV-W 2023 Extended Abstract

Adaptive Bounding Box Uncertainty via Conformal Prediction

Alexander Timans*

UvA-Bosch Delta Lab
University of Amsterdam

Christoph-Nikolas Straehle
Bosch Center for Artifical Intelligence

Robert Bosch GmbH

Kaspar Sakmann
Bosch Center for Artifical Intelligence

Robert Bosch GmbH

Eric Nalisnick
UvA-Bosch Delta Lab

University of Amsterdam

Abstract

We quantify the uncertainty in multi-object bounding
box predictions via conformal prediction. Using novel en-
semble and quantile regression formulations, we are able
to achieve per-class prediction intervals with guaranteed
coverage that are adaptive to object size. We validate
our approaches on real-world datasets (COCO, Cityscapes,
BDD100k) for 2D bounding box localization, and achieve
the desired coverage targets with sensibly tight intervals.

1. Introduction
Quantifying a model’s predictive uncertainty is essen-

tial for success in safety-critical applications such as au-
tonomous driving [23] and mobile robotics [22]. Yet one
obstacle to principled uncertainty quantification (UQ) for
computer vision is the pervasive use of deep neural net-
works — which are often unamenable to traditional tech-
niques for UQ. The framework of Conformal Prediction
(CP) [27, 32] enables a form of distribution-free UQ that
is agnostic to the predictive model’s structure, rendering it
well-suited for black-box models such as neural networks.

In this work, we propose a CP framework designed to
quantify predictive uncertainties in multi-object detection
tasks. CP allows us to produce post-hoc, distribution-free
prediction intervals equipped with a coverage guarantee
for the bounding boxes of new objects (of known classes).
Specifically, we provide users with the following statement
of assurance: “The conformal prediction interval covers the
object’s true bounding box with probability (1− α) for any
known object class”, where α is an acceptable margin of
error. In the context of autonomous driving, such a guar-
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antee can, for example, help certify collision avoidance by
steering clear of the outer interval limit. We ensure our pre-
diction intervals are adaptive to object sizes by employing
strategies based on ensembling and quantile regression.

In the experiments, we apply our approaches to a range
of classes on three large-scale object detection datasets. We
obtain adaptive and informative intervals that adhere to the
above guarantee, and also improve upon prior work [1,11].

2. Background
We now provide some background on the desired con-

formal coverage guarantee, formalize the multi-object de-
tection setting and relate CP to our setting.

2.1. Conformal prediction

We consider the setting of split conformal prediction
[24], where we perform a distinct single split between train-
ing dataDtrain and calibration data {(Xi, Yi)}ni=1 ∼ PXY .
If we follow the general conformal procedure as outlined in
Algorithm 1, we can provide a coverage guarantee for a new
test sample (Xn+1, Yn+1) ∼ PXY in terms of a prediction
set Ĉ(Xn+1), where a finite-sample, distribution-free guar-
antee is given over the event of Ĉ(Xn+1) containing Yn+1.

That is, assuming the samples {(Xi, Yi)}n+1
i=1 are ex-

changeable1, we have that

P(Yn+1 ∈ Ĉ(Xn+1)) ≥ 1− α (1)

for some tolerated miscoverage rate α ∈ (0, 1). The pro-
vided guarantee is marginally valid since it holds on aver-
age across all sample draws from PXY . This is in contrast
to the ideal scenario of conditionally valid coverage per in-
put sample Xn+1, which has been shown to be impossible
to achieve without imposing further assumptions [14, 31].

1this can be considered a relaxed i.i.d. assumption on the data
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As an in-between notion of conditionality, class-
conditional validity can be achieved by conformalizing only
across samples per distinct class (see e.g. [7]), yielding the
following guarantee:

P(Yn+1 ∈ Ĉ(Xn+1)|Yn+1 = y) ≥ 1− α ∀y ∈ Y, (2)

where Y = {1, . . . ,K} are distinct class labels. The guar-
antee we aim to provide relates most strongly to Equation 2.

2.2. Object detection

We now formalize our multi-object detection setting.
Consider an input image X ∈ RH×W×D, where H , W
and D correspond to image height, width and channel
depth. For each input image, we also receive a set of tuples
(x0, y0, x1, y1, l), where (x0, y0, x1, y1) ∈ R4 are the coor-
dinates indicating an object’s bounding box location within
the image, and l ∈ {1, . . . ,K} represents the object’s class
label. Each tuple parameterizes an object, with a total of
O(X) ground truth objects located in the image. For im-
age X we thus have responses {(x0, y0, x1, y1, l)j}O(X)

j=1 .
Note that the object detection model predicts f̂(X) =
Ô(X) objects, where O(X) and Ô(X) don’t necessarily
match. We consider every object as an individual sample
for conformalization, i.e., the same input X will produce
multiple samples matching the different tuple responses
(x0, y0, x1, y1, l)j , j = 1, . . . , O(X).

2.3. Conformal prediction for object detection

We apply CP to the bounding boxes on a per-coordinate
basis, in our 2D case denoted (x0, y0, x1, y1). However,
let us consider the generalization to arbitrary coordinates
ck, k = 1, . . . ,m. Since we apply CP to real-valued coordi-
nates, we face a regression task and our sets Ĉ(Xn+1) ∈ R
take the form of prediction intervals (PIs). Given our multi-
object detection setting, we consider a class-conditional
guarantee to be most meaningful. Intuitively, it would not
be sensible to, for example, use coordinates for detected ob-
jects of class ‘car’ to inform our prediction interval con-
struction for objects of class ‘person’, as we would for
a general marginal guarantee. Rather, we conformalize
within each group of objects belonging to a common class.

Given the above abstraction to m coordinates and a
fixed class label l for any grouped objects, an individ-
ual sample response can be interpreted as a realized ran-
dom variable of the m coordinates only, i.e., we define
Yi := (c1i , . . . , c

k
i , . . . , c

m
i ) ∈ Rm. The class-conditional

coverage guarantee we strive for in Equation 2 is then re-
interpreted in our context as

P(
m⋂

k=1

(ckn+1 ∈ Ĉk(Xn+1))|ln+1 = y) ≥ 1− α ∀y ∈ Y,

(3)

where components are indexed accordingly for a specific
coordinate dimension k, e.g., Ĉk(Xn+1). Conformalizing
each coordinate separately gives rise to multiple testing is-
sues as described in subsection B.2, which we address with
our own correction scheme.

Finally, it is crucial to highlight that the construction of
Ĉk(Xn+1) necessitates a correct class label prediction in
order to satisfy validity. That is, we require l̂n+1 = ln+1

and the provided guarantee in Equation 3 thus only holds
strictly for true positive object detections, an important
limitation also noted by [1, 11].

Prior work. Conformalized PIs for bounding boxes have
been recently considered in [1, 11] (see also Appendix A).
Given our theoretical formulation, we identify the following
limitations in their approaches, which we address:

1. CP is applied to a single class only, thus providing the
most trivial form of the class-conditional guarantee in
Equation 3.

2. Constructed PIs are one-sided intervals (an outer
limit), and more informative two-sided versions are not
considered.

3. To correct for multiple testing, [11] apply Bonferroni
and [1] additionally consider a max(·) operation. Both
employed corrections do not efficiently account for
correlation structure between box coordinates (see also
subsection 3.1).

3. Methods
A key modelling decision in CP is the choice of scoring

function s(·) for computing conformity scores (see Algo-
rithm 1). We experiment with three different choices of
scoring function and subsequent PI construction.

Standard conformal (StdConf). We firstly consider the
simple case of using regression residuals as scores [27], i.e.,
s(f̂(x), y) = |f̂(x) − y|. The resulting conformal PIs are
constructed as Ĉ(Xn+1) = [f̂(Xn+1)− q̂, f̂(Xn+1) + q̂],
where q̂ denotes the computed conformal quantile. This ap-
proach is a straight-forward alteration of [11] for two-sided
PIs. However, it only provides non-adaptive, fixed-width
PIs around coordinates.

Ensemble conformal (EnsConf). In order to construct
adaptive PIs, we next consider using normalized residual
scores [19] of the form s(f̂(x), y) = |f̂(x) − y|/σ̂(x),
where σ̂(·) is some choice for a heuristic uncertainty
estimate. The resulting conformal PIs are constructed
as Ĉ(Xn+1) = [f̂(Xn+1) − σ̂(Xn+1) q̂, f̂(Xn+1) +
σ̂(Xn+1) q̂]. By incorporating a notion of uncertainty,
the constructed PIs can be scaled individually in each
coordinate and thus be adaptive in their magnitudes. We
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employ an ensemble of object detectors and quantify σ̂(·)
as the standard deviation in model predictions [18], while
f̂(·) is obtained using weighted box fusion [28].

Conformal quantile regression (CQRConf). As another
adaptive method, we accommodate Conformal Quantile Re-
gression (CQR) [25] for our setting. We first modify our ob-
ject detection model and train it with a quantile loss func-
tion to produce lower and upper quantile predictions q̂lowα/2

and q̂high1−α/2 per bounding box coordinate2. Under some
regularity conditions, these will converge asymptotically to
the true conditional quantiles [8,15] and achieve target cov-
erage (1 − α), suggesting their usefulness also for prac-
tical finite-sample cases. We subsequently perform CQR
by defining scores s(f̂(x), y) = max{q̂lowα/2(x) − y, y −
q̂high1−α/2(x)}, and constructing conformal PIs as Ĉ(Xn+1) =

[q̂lowα/2(Xn+1) − q̂, q̂high1−α/2(Xn+1) + q̂]. For further imple-
mentation details see subsection C.1.

3.1. Multiple testing correction

Conformalizing each of m coordinates separately gives
rise to multiple testing issues, since interpreting CP from a
hypothesis testing view means running m permutation tests
on nonconformity in parallel [32], resulting in a guaranteed
coverage of at most (1 − mα) (see Equation 7). A naive
correction can be achieved using Bonferroni, since choos-
ing αB = α/m will satisfy target coverage. However, the
Bonferroni correction is overly conservative under positive
dependency of the individual hypothesis [33], which is rea-
sonable to assume given that all coordinates parametrize an
object’s bounding box jointly. In fact, [5] show that a set of
conformal p-values exhibits positive dependency structure a
priori3. We propose an alternative procedure that is able to
exploit correlation among coordinates efficiently for a less
conservative correction without loss of power. We operate
in the rank domain of coordinate-wise conformal scores and
collapse the multiple testing problem to a single hypothesis
test via a max(·) operator. Applying a max(·) has been
considered before for CP [1, 7, 26], but not in conjunction
with ranks and as a stand-alone multiple testing correction
procedure. We show in subsection B.3 that our procedure
max-rank satisfies exchangeability and validity, permit-
ting its integration into any CP approach.

4. Experiments

For our experiments, we rely on pre-trained object detec-
tion models from detectron2 [34], primarily based on a
Faster R-CNN architecture and trained on COCO-train
[21]. We consider datasets COCO-val, cityscapes

2Note that these are not conformalized quantiles
3they are jointly positive regression dependent on a subset [6]

[10] and BDD100k-train [35], which are split into cal-
ibration and test data respectively. We conformalize object
bounding boxes for a variety of classes (hence our class-
conditional approach), and focus our results on a coherent
set of COCO classes that class labels across the datasets can
be mapped to: {person, bicycle, car, motorcycle,
bus, truck} (see subsection C.2).

In order to compute conformal scores for each object,
we need to establish a pairing between an object’s ground
truth and predicted bounding boxes. Similarly to [1,11], we
perform Hungarian matching [17] based on an intersection-
over-union (IoU) threshold of 0.5. Throughout, we set α =
0.1 for a target coverage of 90%.

4.1. Metrics

We validate the predictive performance of our object
detection model and assess the key desiderata of CP
using respective metrics: validity via empirical coverage,
adaptivity via size-stratified coverage, and efficiency via
mean prediction interval width.

Predictive performance. We follow standard practice
and validate model performance using the metrics from
the COCO detection challenge4, i.e., average precision
across multiple IoU thresholds as well as object sizes (see
Appendix D).

Validity. We ensure that our procedure satisfies the cov-
erage guarantee by verifying empirical coverage. Let us
consider a test dataset {(Xj , Yj)}n+nt

j=n+1 of size nt, then we
define empirical coverage as

cov =
1

nt

n+nt∑
j=n+1

1[

m⋂
k=1

(ckj ∈ Ĉk(Xj))]. (4)

Note that cov is a random quantity parametrized by a
distribution and may deviate from target coverage (1 − α)
based on factors such as calibration set size n [31].

Adaptivity. To verify if target coverage is achieved
by compensating undercoverage on some objects with
overcoverage on others, similarly to [2] we verify coverage
across different strata, namely object sizes. We follow the
COCO detection challenge and verify for three sizes of
bounding box surface areas: cov-small (area ≤ 322),
cov-med (area ∈ (322, 962]) and cov-large (area
> 962).

Efficiency. We want constructed conformal PIs to be as
narrow as possible while still satisfying ground truth cover-
age (i.e., remaining valid). We assess their efficiency using
mean prediction interval width. If we consider an obtained

4https://cocodataset.org/#detection-eval

https://cocodataset.org/#detection-eval
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Dataset Method calib. size n cov cov-small cov-mid cov-large MPIW

COCO-val
StdConf 905 0.8816 0.9970 0.9505 0.7649 55.8229
EnsConf 914 0.8829 0.8729 0.8622 0.8975 58.1730
CQRConf 905 0.8862 0.9695 0.9201 0.8091 56.8073

cityscapes
StdConf 3010 0.8909 0.9980 0.9571 0.8358 62.5641
EnsConf 2947 0.8901 0.8782 0.8829 0.8924 82.1022
CQRConf 3010 0.8908 0.8716 0.9227 0.8587 65.2987

BDD100k-train
StdConf 53133 0.8988 0.9979 0.9610 0.7473 47.8932
EnsConf 52278 0.8992 0.8737 0.8849 0.9189 60.4757
CQRConf 53133 0.8988 0.9654 0.9363 0.7942 50.6458

Table 1. Metrics comparison of tested bounding box conformalization procedures across three datasets using the max-rank correction.
Values are means over trials and selected set of classes. cov is expressed as a fraction and should be close to 0.9 (i.e. 90%), while MPIW
is expressed in pixels. A trade-off between MPIW (efficiency) and stratified coverage (adaptivity) is apparent.

Figure 1. Examples for conformalized bounding boxes on BDD100k-train for classes {person, car}. Left to right by column:
StdConf, EnsConf, CQRConf. Ground truth boxes are in red, two-sided conformal prediction interval regions are shaded in green.

PI to be of the form Ĉ(Xn+1) = [L̂(Xn+1), Û(Xn+1)],
then we define the metric as

MPIW =
1

ntm

n+nt∑
j=n+1

m∑
k=1

|Ûk(Xj)− L̂k(Xj)|. (5)

4.2. Results

Our main comparison of the three conformalization pro-
cedures across datasets is displayed in Table 1. We use our
max-rank approach for multiple testing correction, and
also report the mean size of calibration sets |Dcal| = n.
Values are averaged across 1000 trials of random calibra-
tion and test splits, and across the selected set of classes5.

We find that empirical coverage satisfies target coverage
to the extent that calibration set sizes n allow, with cov
for BDD100k-train closest to 90%. Strictly by MPIW,
the basic StdConf method seems to perform best. How-
ever, efficiency comes at the cost of adaptivity, with over-
coverage for small objects compensating undercoverage for
larger ones. We find this effect to balance out for CQRConf

5{person, bicycle, car, motorcycle, bus, truck}

and in particular EnsConf, as corroborated by results on a
per-class basis in Table 6.

This benefit is also apparent visually in Figure 1,
where PIs for these methods scale adaptively in individual
coordinates as needed. That is, they grow for uncertain
box boundaries due to e.g. partial occlusions, and shrink
for certain boundaries. We conclude that for detection
tasks with equally-sized objects, StdConf provides good
performance, while tasks with multiple object sizes can
benefit from the adaptivity properties of EnsConf and
CQRConf. In comparison to using a Bonferroni correction
as seen in Table 4, our max-rank approach produces
substantially tighter intervals and suppresses overcoverage
tendencies.

Baseline comparison. We run additional experiments com-
paring our results to [1], a follow-up research on [11]. They
propose conformal scores to construct outer, one-sided pre-
diction intervals, and suggest using both Bonferroni and a
max(·) operation for multiple testing correction. We adapt
our approaches to produce one-sided PIs, and also com-
pare CP methods using their proposed ‘box stretch’ met-
ric (stretch). Further details can be found in subsec-
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tion C.4. Our results in Table 5 show that our combination
of CP methods and max-rank correction achieves tighter
PIs both in terms of stretch and MPIW while remaining
equally valid.

5. Conclusion
We present and evaluate CP methods to generate PIs for

bounding boxes with a class-conditional coverage guaran-
tee for new samples. Our proposals, which include a novel
multiple testing correction subroutine, generate PIs that are
adaptive to object size. A notable limitation to the provided
guarantee is the condition on correct label prediction, which
we aim to address in the future by additional conformalized
label sets. We also plan the extension of our methods to 3D
bounding boxes and other detection tasks.
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Appendix

A. Related work
Most existing methods for quantifying uncertainty in

bounding box regression problems rely on adapting to the
task at hand well-known methods from the general uncer-
tainty quantification literature such as deep ensembles [18],
Monte Carlo dropout or Bayesian learning, and may require
substantial modifications to the model architecture (see [12]
for a recent survey). However, such uncertainty quantifica-
tion methods do not provide a theoretical guarantee or va-
lidity statement on the quality of obtained uncertainty esti-
mates, specifically on any obtained prediction intervals con-
taining the ground truth bounding box.

Recent attempts at providing such guarantees for the
bounding box localization problem include the use of the
Probably Approximatly Correct (PAC) framework to pro-
duce a guarantee by composition of PAC prediction sets
at multiple model pipeline stages [20]; providing guaran-
tees on multiple risks such as recall and coverage using
a sequential testing procedure based on p-values obtained
from concentration inequalities [3]; and [1, 11], who lever-
age conformal prediction and can be considered the closest
prior works.

Our approaches differ from the former methods in that
we base our obtained guarantee purely on conformal pre-
diction, as opposed to other frameworks. Our approaches
differ from [1, 11] in that we consider multiple classes at
once and establish class-conditional guarantees, investigate
the use of novel adaptive conformity scores, propose a less
conservative multiple testing correction procedure, and val-
idate our results across several datasets. Furthermore, our
methods are designed for the construction of two-sided pre-
diction intervals, as opposed to an outer prediction box only,
providing more granular bounding box information.

B. Mathematical details
B.1. Split conformal prediction

The general conformal procedure for split conformal
prediction is provided in Algorithm 1. We point to [4] for a
user-friendly introduction to conformal prediction.

In classification tasks, prediction sets Ĉ(Xn+1) ⊆
{1, . . . ,K} may be a finite subset of the K class labels.
In regression tasks, Ĉ(Xn+1) ⊆ Y may be a prediction in-
terval on the domain of Y , e.g., Ĉ(Xn+1) = [f̂(Xn+1) −
q̂, f̂(Xn+1) + q̂].

Algorithm 1 Split conformal prediction

1: Input: data D ⊂ X × Y , prediction algorithm A, mis-
coverage level α ∈ (0, 1).

2: Output: Prediction set Ĉ(Xn+1) for test sample
(Xn+1, Yn+1).

3: Procedure:
4: Split data D into two disjoint subsets: a proper training

set Dtrain and calibration set Dcal = {(Xi, Yi)}ni=1.
5: Fit a prediction model on the proper training set:

f̂(·)← A(Dtrain).
6: Define a scoring function s : X × Y → R applied to
Dcal, resulting in (non)conformity scores

S = {s(f̂(Xi), Yi)}ni=1.
s(·) encodes a notion of agreement (conformity) be-
tween prediction f̂(Xi) and ground truth Yi.

7: Compute a conformal quantile q̂, defined as the
⌈(n+ 1)(1− α)/n⌉-th empirical quantile of S.

q̂ is a sample-corrected quantile choice that guarantees
target coverage (1− α) by construction.

8: For a new test sample (Xn+1, Yn+1), a valid conformal
prediction set for Xn+1 is given by

Ĉ(Xn+1) = {y ∈ Y : s(f̂(Xn+1), y) ≤ q̂}.
Validity refers to satisfying the guarantee in Equation 1.

9: End procedure

B.2. Multiple testing problem

We first need to establish the equivalence of several
events in the context of obtained prediction sets (here in the
form of intervals). Let us extend the notation for the non-
conformity score of a single sample (Xi, Yi) from Dcal to
si, and for all samples to s1:n. The conformal quantile q̂
at coverage level (1 − α) computed from the scores s1:n
can also be denoted as q̂(1 − α; s1:n). Furthermore, let
p(sn+1, s1:n) be a valid p-value of the hypothesis test on
the nonconformity of sn+1, i.e. the null hypothesis supports
that sn+1 conforms to s1:n. We note that this is an alterna-
tive interpretation of the conformal prediction set construc-
tion from the hypothesis testing perspective [32].6

Then, by construction of Ĉ(Xn+1) and duality of hy-
pothesis testing and confidence intervals we have the equiv-
alence of following events:

Yn+1 /∈ Ĉ(Xn+1)⇔ sn+1 > q̂(1− α; s1:n)

⇔ p(sn+1, s1:n) ≤ α.
(6)

6A valid p-value P is defined as P(P ≤ α) ≤ α ∀α ∈ [0, 1].
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This can be used to showcase the arising multiple testing
problem for conformalizing on coordinate-level as follows:

P(
m⋂

k=1

(ckn+1 ∈ Ĉk(Xn+1)))

= 1− P(
m⋃

k=1

(ckn+1 /∈ Ĉk(Xn+1)))

≥ 1−
m∑

k=1

P(ckn+1 /∈ Ĉk(Xn+1))

= 1−
m∑

k=1

P(p(skn+1, s
k
1:n) ≤ αk)

= 1−
m∑

k=1

αk

= 1−mα since αk = α ∀k is fixed.

(7)

We observe that we cannot guarantee target coverage since
1−mα ≤ 1− α for any m ∈ N+.

B.3. Multiple testing correction (max-rank)

We show that our approach satisfies exchangeability and
validity by demonstrating that these properties hold for the
two key components of it: 1) operating in the domain of
ranks of scores, as opposed to working with scores directly;
and 2) applying a max(·) operation on these ranks (or any
set of exchangeable random variables (RVs)).

We begin by showing the exchangeability property,
followed by validity. We then formulate our procedure
algorithmically in Algorithm 2.

Exchangeability preservation. Following the notation in
[16], let us abbreviate the set of indices {1, . . . , n} by [n]
for any n ≥ 1. We also define the rank of element xi in a
set {x1, . . . , xn} of n distinct elements as

rank(xi; {x1:n}) := |{j ∈ [n] : xj ≤ xi}|, (8)

i.e., the size of the set of elements smaller or equal xi. Note
that elements and therefore ranks need to be distinct (no
ties), potentially by introducing jitter noise. We can then
invoke the following theorem:

Theorem 1 (Distribution of ranks [16], Thm. 2). For ex-
changeable RVs X1, . . . , Xn we have that

(rank(Xi; {X1:n}) : i ∈ [n]) ∼ Unif({π : [n]→ [n]}),

where Unif(·) is the uniform distribution over all permuta-
tions of [n], i.e., each permutation occurs with equal prob-
ability 1/n!.

If we consider the ranks over conformal scores, which
can be shown to be exchangeability-preserving [13, 30], by

Theorem 1 the ranks of Xi, i ∈ [n] are therefore exchange-
able and their distribution does not depend on the distribu-
tion of Xi.

For exchangeability of the max(·) operator, we make use
of the following theorem:

Theorem 2 (Exchangeability under transformations [9,
16]). Given a vector of exchangeable RVs X =
(X1, . . . , Xn) ∈ Xn and a fixed transformation G, we
consider G(·) exchangeability-preserving if for each per-
mutation π1 : [m] → [m] there exists a permutation
π2 : [n]→ [n] s.t.

∀x ∈ Xn : π1G(x) = G(π2x).

Given the definition of exchangeable RVs in our setting
as Yi = (c1i , . . . , c

m
i ), i = 1, . . . , n, a vector of RVs is given

as Y = (Y1, . . . , Yn) ∈ Yn and we fix the transformation

G : Y 7→ ( max
1≤k≤m

ck1 , . . . , max
1≤k≤m

ckn). (9)

Then for any y ∈ Yn we have that

π1G(y) = π1 max
1≤k≤m

y = max
1≤k≤m

π2y = G(π2y) (10)

since G(·) is symmetric and indifferent to permutation.
Thus G(Y ) is also exchangeable, i.e., the max(·) operator
is exchangeability-preserving following Theorem 2. We
can replace RVs Yi, i = 1, . . . , n with any other set of
exchangeable RVs of the same shape, such as the ranks of
scores.

Validity. We show validity of operating in the domain of
ranks by use of the following corollary:

Corollary 1 ( [16], Corr. 1). Under assumptions of Theo-
rem 1, we have that

P(rank(Xn; {X1:n}) ≤ t) =
⌊t⌋
n

,

for t ∈ R. In addition, the RV rank(Xn; {X1:n})/n is a
valid p-value.

Note that for the ranks of scores we have
rank(si; {s1:n}) = i, i.e., the rank of the score at position i
is the position index itself (assuming unique scores). We set
t = rank(s⌈(n+1)(1−α)⌉; {s1:(n+1)}) = ⌈(n + 1)(1 − α)⌉
and using the exchangeability of ranks and Corollary 1 we
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have

P(Yn+1 ∈ Ĉ(Xn+1)) = P(rank(sn+1; {s1:(n+1)}) ≤ t)

=

t∑
i=1

P(rank(sn+1; {s1:(n+1)}) = i)

=
t

n+ 1

=
⌈(n+ 1)(1− α)⌉

n+ 1

≥ (n+ 1)(1− α)

n+ 1
= 1− α.

(11)

For validity of the max(·) operator, consider working
with scores directly. The set of scores {smax

i }n+1
i=1 where

smax
i = max

1≤k≤m
ski is exchangeable since the max(·) oper-

ator is exchangeability-preserving. Then we have for the
conformal quantiles that q̂(1 − α; smax

1:n ) ≥ q̂(1 − α; sk1:n)
and thus

P(skn+1 ≤ q̂(1− α; smax
1:n )) ≥ P(skn+1 ≤ q̂(1− α; sk1:n))

≥ 1− α

(12)

for any k ∈ 1, . . . ,m, where the last inequality follows
from the construction of q̂(1 − α; sk1:n) to be valid if we
conformalize in each dimension k. In other words, since
Ĉmax ⊇ Ĉk and Ĉk is valid, then Ĉmax also has to be. The
argumentation can be translated to working with ranks of
scores, given that ranks are also exchangeable and valid.

Procedure. We now formalize and describe our multiple
testing correction approach max-rank. For notation pur-
poses, we denote matrices upper-case and bold (X), vectors
lower-case and bold (x), scalars without bolding (x or X).
Define the l∞-norm as ∥x∥∞ = max

1≤i≤n
|xi| for a discrete

vector x of size n. We further abbreviate the rank of a score
rank(si; {s1:n}) as ri.

Then for Dcal = {(Xi, Yi)}ni=1 we have the following
relevant matrices:

Score matrix S = (s1, . . . , sn) = [sik] ∈ Rn×m

Rank matrix R = (r1, . . . , rn) = [rik] ∈ Nn×m,
(13)

where 1 ≤ i ≤ n, 1 ≤ k ≤ m. The algorithmic procedure
is described in Algorithm 2.

Note that the given algorithm optimizes for coverage
across all coordinate dimensions simultaneously by use of
the l∞-norm, however it is also possible to select a cover-
age optimization criterion and optimize for coverage in a
specific subset of coordinate dimensions limited by indices
i, j ∈ [m] : i < j. The algorithm then undergoes some
modifications which we omit here.

Algorithm 2 Multiple testing correction via max-rank

1: Input: Score matrix S, rank matrix R
2: Output: Coordinate-wise quantiles q̂k ∀k ∈ [m]
3: Procedure:
4: Apply ∥·∥∞ row-wise to R:

rmax = (∥r1∥∞, . . . , ∥rn∥∞) =
( max
1≤k≤m

|r1k|, · · · , max
1≤k≤m

|rnk|) ∈ Nn

5: Sort rmax in ascending order (sort) and select rmax
t as

the rank at index t = q̂(1−α; rmax) to ensure minimum
desired coverage.

6: Sort S column-wise such that
∀k ∈ [m] : sk1 < · · · < skn.

7: Select for each column in S the score at rank rmax
t as

conformal quantile, i.e.,
∀k ∈ [m] : q̂k = skrmax

t
.

8: End procedure

C. Implementation details

C.1. Conformal quantile regression (CQRConf)

We modify an object detection model to regress to es-
timated conditional quantiles of the bounding box coor-
dinates alongside a standard mean prediction. This is
achieved by supplementing the model’s final regression out-
put layer with additional box prediction heads, freezing all
pre-trained weights, and training the additional heads with
a quantile loss function, also called pinball loss [15, 29].

The loss for some quantile estimator q̂τ of the τ -th quan-
tile is given by

L(y, q̂τ ) =

{
τ (y − q̂τ (x)) if y − q̂τ (x) > 0

(1− τ) (q̂τ (x)− y) else.
(14)

It intuitively penalizes both under- and overcoverage
weighted by the target quantile τ , and recovers the L1-loss
for τ = 0.5. Since the box heads are architecturally in-
dependent, we can train arbitrary many quantile estimators
in parallel, where we obtain an individual loss L(y, q̂τ ) for
each τ . The final loss for model updating is the sum of all
individual quantile losses.

For CQR, we require only lower and upper quantiles
τ low and τhigh. If we aim for target coverage (1 − α), a
reasonable choice is τ low = α/2 and τhigh = 1 − α/2,
since the obtained interval [q̂lowα/2, q̂

high
1−α/2] will asymptoti-

cally achieve target coverage. However, in practice we re-
quire further interval scaling via CQR to obtain valid cov-
erage in finite samples. Note that the choices for τ low and
τhigh are a modelling decision, and can in fact be tuned to
produce more efficient PIs without invalidating the confor-
mal coverage guarantee [25]. However, we only consider
the single setting with τ low = α/2 and τhigh = 1 − α/2.
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Dataset # images Object class
person bicycle car motorcycle bus truck

COCO-val 5000 10777 314 1918 367 283 414
cityscapes 5000 24713 5871 33658 895 477 577
BDD100k-train 70000 96929 7124 701507 3023 11977 27963

Table 2. Image counts and object distributions for the selected set of classes.

For a given target coverage of 90%, these correspond to
τ low = 0.05 and τhigh = 0.95.

C.2. Dataset splits and class mappings

We display the distribution of objects per class for our
selected set of classes in Table 2. Objects are assigned
to either calibration or test data based on the assignment
to either split for the respective image they belong to.
We randomly split the images according to the following
calibration set sizes as a fraction of total available data for
each dataset: 50% for COCO-val, 50% for cityscapes
and 70% for BDD100k-train.

Class mappings. Our pre-trained object detection models
are trained on COCO-train and recognize all 80 COCO
object instance classes. In order to permit the use of pre-
trained models without further finetuning as well as find
a common intersection of classes across all three datasets,
we map relevant classes with available object instance
annotations from cityscapes and BDD100k-train
to equivalent COCO classes. For the considered set of
classes {person, bicycle, car, motorcycle, bus,
truck}, we find 1:1 correspondences for most classes. We
additionally do the following mappings:

• for cityscapes, we map classes ‘pedestrian’ and
‘rider’ to class ‘person’;

• for BDD100k-train, we map classes ‘person’ and
‘rider’ to class ‘person’.

C.3. Model details and parameter settings

The primarily used pre-trained model from
detectron2 is a Faster R-CNN backbone model
with feature pyramid network and a fully connected
bounding box predition head, trained for ∼ 37 epochs on
COCO-train7.

Inference parameters. We identify two key parameters
that filter the proposal boxes to produce the final bounding
box predictions, which we fix as follows:

7model name X101-FPN, see https : / / github . com /
facebookresearch / detectron2 / blob / main / MODEL _
ZOO.md

• The score parameter removes any box proposals that
receive a model confidence score below a specified
threshold, which we fix at 0.5.

• The non-maximum surpression parameter removes
any superfluous box proposals that record an IoU over-
lap above the specified threshold except for the box
with the highest confidence score. We set this value to
an IoU of 0.6.

Quantile head training. We freeze all pre-trained model
weights and only train the new box prediction heads with a
compounded quantile loss. We set the learning rate to 0.02
and train for ∼ 3000 iterations on COCO-train with a
batch size of 16.

C.4. Baseline comparison

We compare our approaches to the conformal scoring
methods presented in [1], which have been designed for
a one-sided, outer PI construction. Let us once again
consider the 2D bounding box setting with coordinate
tuples Y = (x0, y0, x1, y1). Specifically, we compare to
the following baselines:

(add + Bonf) We use the scores

s(f̂(x), y) = (x̂0 − x0, ŷ0 − y0, x1 − x̂1, y1 − ŷ1) (15)

and obtain conformalized outer PI coordinates as

Ĉ(Xn+1) = (x̂0 − q̂(1− αB ; s1:n), ŷ0 − q̂(1− αB ; s1:n),

x̂1 + q̂(1− αB ; s1:n), ŷ1 + q̂(1− αB ; s1:n)),

(16)

where q̂(1 − αB ; s1:n) is the coordinate-level conformal
quantile at coverage level (1 − αB) based on scores s1:n,
and αB = α/4 is the Bonferroni correction (Bonf) for
target coverage (1− α).

(mult + Bonf) We use the scores

s(f̂(x), y) = (
x̂0 − x0

ŵ
,
ŷ0 − y0

ĥ
,
x1 − x̂1

ŵ
,
y1 − ŷ1

ĥ
),

(17)
where ŵ = x̂1 − x̂0 and ĥ = ŷ1 − ŷ0 are the predicted
box width and height respectively. We obtain conformalized

https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md
https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md
https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md
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outer PI coordinates as

Ĉ(Xn+1) = (x̂0 − ŵ q̂(1− αB ; s1:n), ŷ0 − ĥ q̂(1− αB ; s1:n),

x̂1 + ŵ q̂(1− αB ; s1:n), ŷ1 + ĥ q̂(1− αB ; s1:n)),

(18)

where once again αB = α/4 is the Bonferroni correction.

(add + max, mult + max) Instead of computing
coordinate-level quantiles corrected via Bonferroni, the
authors in [1] suggest taking a max(·) operation over coor-
dinate scores in Equation 15 and Equation 17 respectively,
resulting in a set of scores smax

1:n . A conformal quantile
q̂(1− α; smax

1:n ) is then computed directly at target coverage
over these scores, alleviating the need for further correc-
tion. The idea is close to our multiple testing correction
approach max-rank, but operates directly in the domain
of scores instead. Resulting PI coordinates are constructed
as in Equation 16 and Equation 18 simply by replacing the
quantile.

We compare the above baselines to the following
methods of ours:

(add + max-rank, mult + max-rank) We
use the proposed conformal scores from Equation 15
and Equation 17 in conjunction with our own multiple
testing correction max-rank. Note that Equation 15 is
a one-sided (signed) version of the scores employed for
StdConf, and Equation 17 can be considered related to
the normalized scores as used for EnsConf.

(EnsConf + max-rank) We also compare to an
adapted version of EnsConf for one-sided PIs, where we
use Equation 17 but normalize by the obtained uncertain-
ties σ̂(·). We do not consider a modification to CQRConf
because it is not straightforward how a one-sided version
of its conformal scores should be constructed.

Box stretch metric. We implement the proposed ‘box
stretch’ evaluation metric from [1] that assesses the addi-
tional box surface area incurred by conformalization. For-
mally, we denote the metric as

stretch =
1

nt

n+nt∑
j=n+1

√
A(Ĉ(Xj))

A(f̂(Xj))
, (19)

where A(·) is the computed surface area of the bounding
box formed by the respective input, i.e., the predicted
bounding box coordinates, and the outer conformal PI
bounds. Ideally, we desire stretch to be close to 1.0.

Mean prediction interval width. In order to further al-
low comparison using the MPIW metric, which is formally

defined for two-sided PIs only, we additionally construct
a two-sided version of each of the above methods by con-
sidering the distances to the predicted box center, i.e., we
place a lower PI bound at the bounding box center coordi-
nates. Note that we also do the same for our own (initially
two-sided) methods to allow for a fair comparison.

D. Additional results
Predictive performance. We validate the predictive
performance as measured via average precision (AP)
metrics for our primary pre-trained object detection model
across datasets in Table 3. Obtained scores are in line with
expectations, confirming that the underlying predictive
model performs adequately.

Main results. Table 4 displays our results for confor-
malization using a Bonferroni correction (rather than
max-rank) to account for multiple testing. We observe
overall inferior performance, as measured by generally
larger MPIW caused by overcoverage tendencies. Table 6
displays our main results from Table 1, but instead of
averaging across all classes we report results separately for
each individual class. We also display additional exemplary
conformalized bounding boxes for different classes on
COCO-val, cityscapes and BDD100k-train in
Figure 2, Figure 3 and Figure 4 respectively.

Baseline comparison. Table 5 displays the results for the
comparison of our CP approaches to the baselines taken
from [1] (see subsection C.4). We observe a superior perfor-
mance for our methods, as measured by a lower stretch
and MPIW.
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Dataset AP@IoU=.50:.05:.95 AP@IoU=.75 AP@IoU=.50 AP-small AP-med AP-large

COCO-val 0.4521 0.4937 0.6655 0.2184 0.2781 0.4281
cityscapes 0.432 0.4641 0.6637 0.027 0.0459 0.2782
BDD100k-train 0.3098 0.3141 0.5256 0.0745 0.14 0.3055

Table 3. Average precision (AP) scores following the COCO detection challenge metrics for our primarily employed pre-trained object
detection model X101-FPN (see subsection C.3). Results are the mean over our selected set of COCO classes. The primary metric
AP@IoU=.50:.05:.95 averages AP scores for 10 different IoU thresholds in [0.5, 0.95] with step size 0.05. AP-small, AP-med
and AP-large compute scores across object sizes (see similarly for cov in subsection 4.1).

Dataset Method calib. size n cov cov-small cov-mid cov-large MPIW

COCO-val
StdConf 905 0.9445 0.9990 0.9781 0.8722 109.3209
EnsConf 914 0.9406 0.9327 0.9329 0.9450 139.7342
CQRConf 905 0.9417 0.9917 0.9629 0.8859 93.3717

cityscapes
StdConf 3010 0.9263 0.9983 0.9773 0.8802 86.2404
EnsConf 2947 0.9275 0.8844 0.9241 0.9286 131.6933
CQRConf 3010 0.9228 0.9436 0.9504 0.8929 82.7069

BDD100k-train
StdConf 53133 0.9138 0.9986 0.9698 0.7770 52.3321
EnsConf 52278 0.9092 0.8880 0.8959 0.9270 64.2526
CQRConf 53133 0.9091 0.9757 0.9449 0.8096 52.9734

Table 4. Metrics comparison of tested bounding box conformalization procedures across three datasets using the Bonferroni correction
(Bonf). Values are means over trials and selected set of classes. cov is expressed as a fraction and should be close to 0.9 (i.e. 90%), while
MPIW is expressed in pixels.

Dataset Method stretch (↓) cov cov-small cov-mid cov-large MPIW (↓)

C
O
C
O
-
v
a
l

add + Bonf* 2.203 0.9452 0.9982 0.9767 0.8753 108.1652
mult + Bonf* 1.5784 0.9401 0.9503 0.9274 0.9492 109.7565
add + max* 1.6896 0.9081 0.9949 0.9610 0.8103 89.3792
mult + max* 1.3877 0.9079 0.9211 0.8847 0.9221 94.5110
add + max-rank 1.5966 0.8819 0.9954 0.9481 0.7688 86.4771
mult + max-rank 1.3529 0.8821 0.8948 0.8626 0.8954 91.9430
EnsConf + max-rank 1.3744 0.8830 0.8946 0.8608 0.8977 91.5822

c
i
t
y
s
c
a
p
e
s

add + Bonf* 1.7386 0.9265 0.9998 0.9822 0.8779 116.9056
mult + Bonf* 1.5601 0.9220 0.8579 0.9210 0.9325 123.3368
add + max* 1.6383 0.9053 0.9999 0.9746 0.8498 109.8954
mult + max* 1.5229 0.9054 0.8966 0.8884 0.9178 117.7613
add + max-rank 1.5592 0.8906 0.9999 0.9735 0.8308 105.7331
mult + max-rank 1.4580 0.8907 0.8303 0.8833 0.9040 112.8632
EnsConf + max-rank 1.5195 0.8903 0.9180 0.9059 0.8852 117.7881

B
D
D
1
0
0
k
-
t
r
a
i
n add + Bonf* 1.7213 0.9128 0.9993 0.9662 0.7796 76.6727

mult + Bonf* 1.5095 0.9069 0.8822 0.9000 0.9183 79.9462
add + max* 1.6958 0.9007 0.9985 0.9576 0.7608 75.8324
mult + max* 1.5361 0.9008 0.8903 0.8904 0.9145 80.9566
add + max-rank 1.6633 0.8991 0.9989 0.9575 0.7536 74.8984
mult + max-rank 1.4943 0.8991 0.8727 0.8906 0.9126 79.0366
EnsConf + max-rank 1.6102 0.8992 0.8898 0.8858 0.9160 84.6317

Table 5. Metrics comparison of CP methods proposed in [1] (denoted with *) against one-sided versions of our bounding box conformal-
ization procedures. Values are means over trials and selected set of classes. stretch is a fraction desired to be close to 1.0, cov is
expressed as a fraction and should be close to 0.9 (i.e. 90%), while MPIW is expressed in pixels and desired to be low.
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Dataset Class Method calib. size n cov cov-small cov-mid cov-large MPIW

C
O
C
O
-
v
a
l

person
StdConf 4326 0.8995 0.9993 0.9607 0.795 43.6731
EnsConf 4374 0.899 0.8887 0.885 0.9165 43.5564
CQRConf 4326 0.8995 0.995 0.9418 0.8137 38.2321

bicycle
StdConf 93 0.8646 1.0 0.9298 0.7447 61.2584
EnsConf 93 0.8737 0.8738 0.8371 0.909 60.9342
CQRConf 93 0.8756 0.9869 0.9018 0.8057 63.5989

car
StdConf 665 0.8963 0.9865 0.8844 0.6576 22.2448
EnsConf 669 0.8964 0.8957 0.8985 0.8927 26.1741
CQRConf 665 0.896 0.9539 0.895 0.7239 21.4515

motorcycle
StdConf 131 0.8779 1.0 0.9849 0.8021 75.9179
EnsConf 134 0.8795 0.7914 0.8765 0.8894 91.1611
CQRConf 131 0.894 0.9939 0.9596 0.8443 78.4748

bus
StdConf 109 0.8773 0.9964 0.9623 0.838 44.216
EnsConf 107 0.8742 – 0.8243 0.896 43.772
CQRConf 109 0.8778 0.8889 0.8902 0.8728 62.0776

truck
StdConf 107 0.8741 1.0 0.9808 0.7519 87.6273
EnsConf 106 0.8744 0.9147 0.852 0.8817 83.4402
CQRConf 107 0.8739 0.9982 0.9321 0.7941 77.0087

c
i
t
y
s
c
a
p
e
s

person
StdConf 6017 0.8998 0.9949 0.9453 0.8013 37.7866
EnsConf 5863 0.8994 0.8838 0.8925 0.9137 46.802
CQRConf 6017 0.8999 0.9863 0.9381 0.8159 33.9054

bicycle
StdConf 1132 0.8981 – 0.9779 0.8144 65.1831
EnsConf 1142 0.8974 – 0.8972 0.8992 92.0829
CQRConf 1132 0.8978 – 0.9331 0.861 66.0216

car
StdConf 10472 0.8998 0.999 0.9498 0.8329 38.6513
EnsConf 10263 0.8996 0.8725 0.9004 0.9022 50.1122
CQRConf 10472 0.8996 0.9765 0.9258 0.8606 36.5904

motorcycle
StdConf 184 0.8849 1.0 0.9806 0.8258 75.2226
EnsConf 176 0.8858 – 0.9003 0.8748 107.983
CQRConf 184 0.8849 0.652 0.9537 0.858 80.1514

bus
StdConf 129 0.8836 – 0.9291 0.8773 72.9359
EnsConf 124 0.8796 – 0.7926 0.8907 97.0354
CQRConf 129 0.8827 – 0.8583 0.8865 90.725

truck
StdConf 123 0.8794 – 0.9602 0.8631 85.6053
EnsConf 115 0.8789 – 0.9143 0.8736 98.5978
CQRConf 123 0.8796 – 0.9272 0.87 84.3987

B
D
D
1
0
0
k
-
t
r
a
i
n

person
StdConf 35417 0.8999 0.9895 0.9085 0.5928 25.0930
EnsConf 35634 0.8997 0.8885 0.8993 0.9321 37.9262
CQRConf 35417 0.9000 0.9775 0.9045 0.6520 23.3128

bicycle
StdConf 1836 0.8986 1.0 0.9701 0.7043 50.8057
EnsConf 1801 0.8984 0.9044 0.8897 0.9178 72.6298
CQRConf 1836 0.8983 0.9773 0.9446 0.7697 51.4883

car
StdConf 269917 0.8999 0.9979 0.9413 0.7599 34.0415
EnsConf 264998 0.9001 0.8815 0.8953 0.9209 42.5502
CQRConf 269917 0.9000 0.9867 0.9205 0.8011 30.6899

motorcycle
StdConf 710 0.8961 1.0 0.9803 0.7253 57.4015
EnsConf 660 0.8976 0.8923 0.8897 0.9101 75.3002
CQRConf 710 0.8967 0.9215 0.9470 0.8087 54.7263

bus
StdConf 3284 0.8991 1.0 0.9800 0.8653 59.8519
EnsConf 3030 0.8997 – 0.8590 0.9158 67.8621
CQRConf 3284 0.8981 0.9451 0.9379 0.8815 80.0147

truck
StdConf 7632 0.8994 1.0 0.9854 0.8360 60.1658
EnsConf 7543 0.8996 0.8017 0.8764 0.9165 66.5856
CQRConf 7632 0.8997 0.9841 0.9633 0.8524 63.6431

Table 6. Metrics comparison of tested bounding box conformalization procedures across three datasets using the max-rank correction.
Values are means over trials and per selected class. cov is expressed as a fraction and should be close to 0.9 (i.e. 90%), while MPIW is
expressed in pixels.
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Figure 2. Examples for conformalized bounding boxes on COCO-val for classes {person, car, bus}. Left to right by column:
StdConf, EnsConf, CQRConf. Ground truth boxes are in red, two-sided conformal prediction interval regions are shaded in green.

Figure 3. Examples for conformalized bounding boxes on cityscapes for classes {person, car, bicycle, truck}. Left to right
by column: StdConf, EnsConf, CQRConf. Ground truth boxes are in red, two-sided conformal prediction interval regions are shaded
in green.
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Figure 4. Examples for conformalized bounding boxes on BDD100k-train for classes {person, car}. Left to right by column:
StdConf, EnsConf, CQRConf. Ground truth boxes are in red, two-sided conformal prediction interval regions are shaded in green.


	. Introduction
	. Background
	. Conformal prediction
	. Object detection
	. Conformal prediction for object detection

	. Methods
	. Multiple testing correction

	. Experiments
	. Metrics
	. Results

	. Conclusion
	. Related work
	. Mathematical details
	. Split conformal prediction
	. Multiple testing problem
	. Multiple testing correction (max-rank)

	. Implementation details
	. Conformal quantile regression (CQRConf)
	. Dataset splits and class mappings
	. Model details and parameter settings
	. Baseline comparison

	. Additional results

